

Lecture 08 – Unsupervised Learning

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
 - 1. Partitioning Methods
 - 2. Hierarchical Methods
 - 3. Density-Based Methods
- Summary

What is Cluster Analysis?

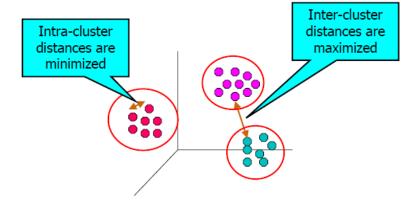
- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., *learning by observations* vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: *cohesive متماسك* within clusters
 - low <u>inter-class</u> similarity: *distinctive* تمين between clusters
- The quality of a clustering method depends on:
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the hidden patterns

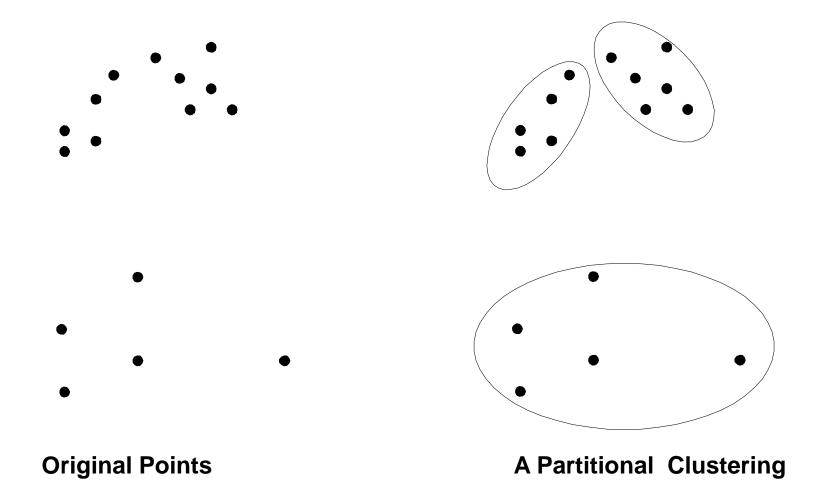


Un-Supervising Learning

- Cluster Analysis: Basic Concepts
 - 1. Partitioning Methods

- 2. Hierarchical Methods
- 3. Density-Based Methods
- Summary

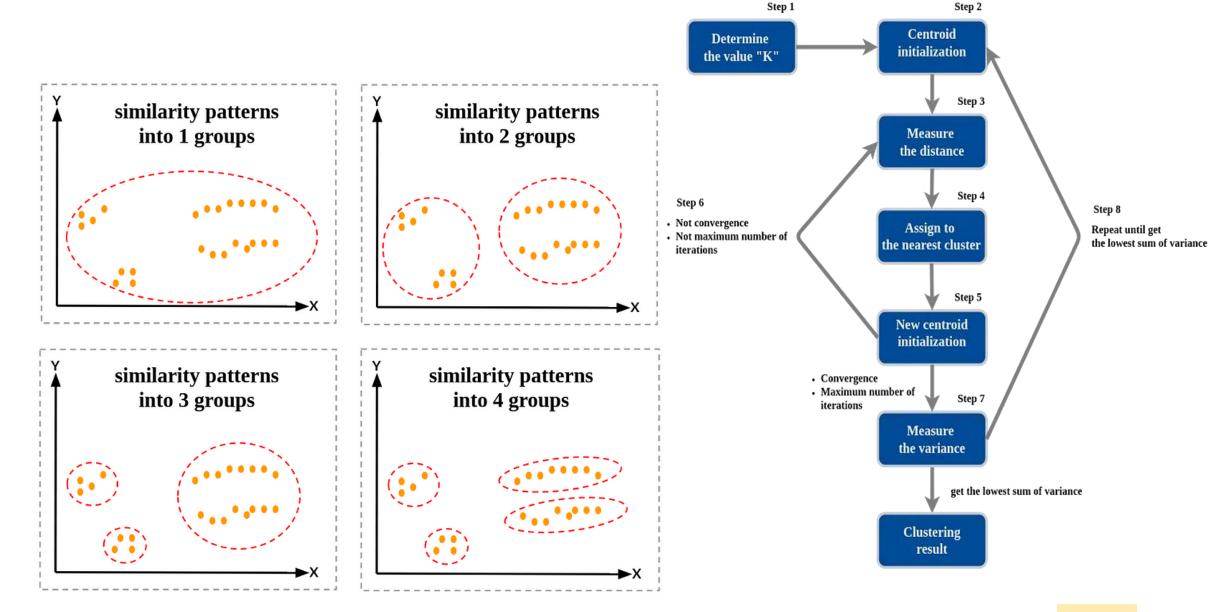
Partitional Clustering

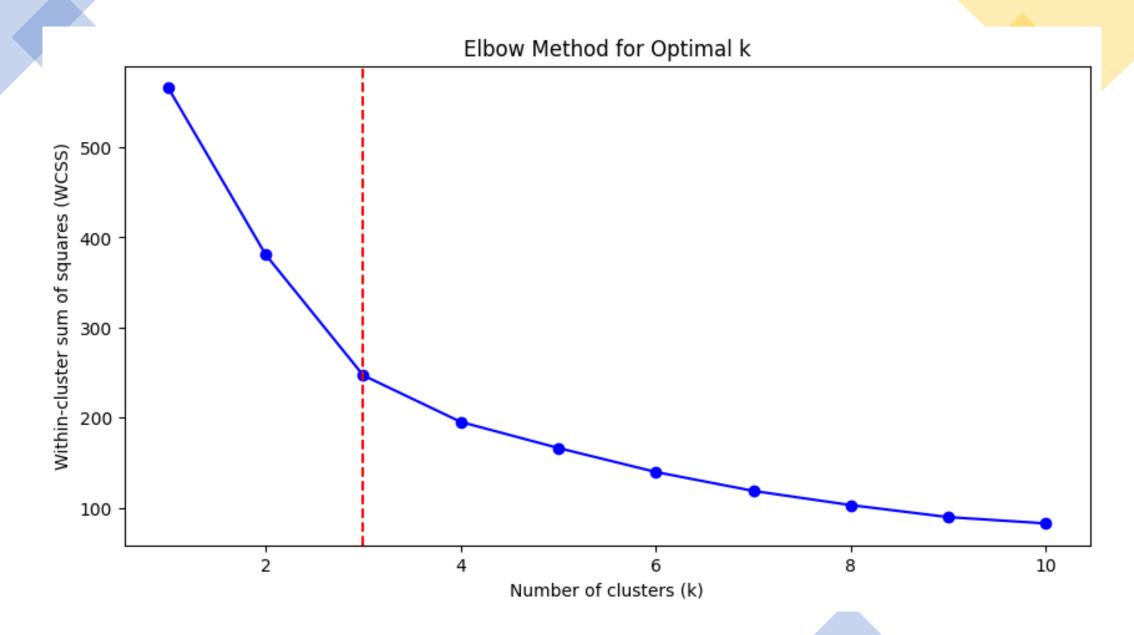


1-The K-Means Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
 - Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters
 of the current partitioning (the centroid is the center, i.e.,
 mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

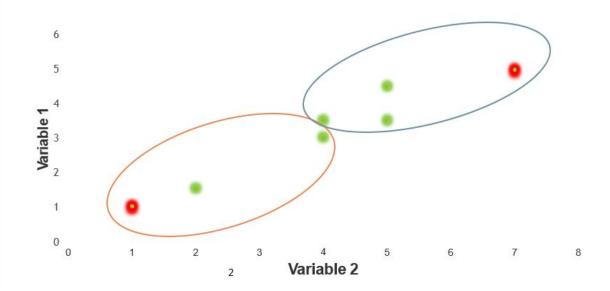
1-The K-Means Clustering Method ... cont.





A Simple example k-means (using K=2)

Individual	Variable 1	Variable 2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5



Step 1:

• <u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters. In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Step 2:

	Centroid 1	Centroid 2
1	$\int (1-1)^2 + (1-1)^2 = 0$	$\int (5-1)^2 + (7-1)^2 = 7.21$
2	$J(1-1.5)^2 + (1-2)^2 = 1.12$	$\int (5-1.5)^2 + (7-2)^2 = 6.10$
3	$\int (1-3)^2 + (1-4)^2 = 3.61$	$\int (5-3)^2 + (7-4)^2 = 3.61$
4	$\int (1-5)^2 + (1-7)^2 = 7.21$	$\int (5-5)^2 + (7-7)^2 = 0$
5	$\int (1-3.5)^2 + (1-5)^2 = 4.72$	$\int (5-3.5)^2 + (7-5)^2 = 2.5$
6	$\int (1-4.5)^2 + (1-5)^2 = 5.31$	$\int (5-4.5)^2 + (7-5)^2 = 2.06$
7	$J(1-3.5)^2 + (1-4.5)^2 = 4.30$	$\int (5-3.5)^2 + (7-4.5)^2 = 2.92$

Step 2:

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

Group 1 =
$$\left(\frac{1+1.5+3}{3}\right)$$
, $\left(\frac{1+2+4}{3}\right)$ = $(1.83, 2.33)$
Group 2 = $\left(\frac{5+3.5+4.5+3.5}{4}\right)$, $\left(\frac{7+5+5+4.5}{4}\right)$ = $(4.12, 5.38)$

Step 3:

	Centroid 1	Centroid 2	
1	$\int (1.83 - 1)^2 + (2.33 - 1)^2 = 1.57$	$\int (4.12 - 1)^2 + (5.38 - 1)^2 = 5.38$	
2	$\int (1.83 - 1.5)^2 + (2.33 - 2)^2 = 0.47$	$\int (4.12 - 1.5)^2 + (5.38 - 2)^2 = 4.29$	
3	$\int (1.83 - 3)^2 + (2.33 - 4)^2 = 2.04$	$\int (4.12 - 3)^2 + (5.38 - 4)^2 = 1.78$	
4	$\int (1.83 - 5)^2 + (2.33 - 7)^2 = 5.64$	$\int (4.12 - 5)^2 + (5.38 - 7)^2 = 1.84$	
5	$\int (1.83 - 3.5)^2 + (2.33 - 5)^2 = 3.15$	$\int (4.12 - 3.5)^2 + (5.38 - 5)^2 = 0.73$	
6	$\int (1.83 - 4.5)^2 + (2.33 - 5)^2 = 3.78$	$\int (4.12 - 4.5)^2 + (5.38 - 5)^2 = 0.54$	
7	$\int (1.83 - 3.5)^2 + (2.33 - 4.5)^2 = 2.74$	$\int (4.12 - 3.5)^2 + (5.38 - 4.5)^2 = 1.08$	

Therefore, the new clusters are:

Group 1 =
$$\binom{1+1.5}{2}$$
, $\binom{1+2}{2}$ = $(1.25, 1.5)$

Group 2 =
$$\binom{3+5+3.5+4.5+3.5}{5}$$
, $\binom{4+7+5+5+4.5}{5}$ = (3.9, 5.1)

Step 4:

	Centroid 1	Centroid 2
1	$\int (1.25 - 1)^2 + (1.5 - 1)^2 = 0.58$	$J(3.9-1)^2 + (5.1-1)^2 = 5.02$
2	$J(1.25 - 1.5)^2 + (1.5 - 2)^2 = 0.56$	$J(3.9 - 1.5)^2 + (5.1 - 2)^2 = 3.92$
3	$J(1.25 - 3)^2 + (1.5 - 4)^2 = 3.05$	$\int (3.9 - 3)^2 + (5.1 - 4)^2 = 1.42$
4	$J(1.25 - 5)^2 + (1.5 - 7)^2 = 6.66$	$\int (3.9 - 5)^2 + (5.1 - 7)^2 = 2.20$
5	$J(1.25 - 3.5)^2 + (1.5 - 5)^2 = 4.16$	$J(3.9-3.5)^2 + (5.1-5)^2 = 0.41$
6	$J(1.25 - 4.5)^2 + (1.5 - 5)^2 = 4.78$	$J(3.9-4.5)^2 + (5.1-5)^2 = 0.61$
7	$J(1.25 - 3.5)^2 + (1.5 - 4.5)^2 = 3.75$	$J(3.9-3.5)^2 + (5.1-4.5)^2 = 0.72$

Therefore, there is no change in the cluster

► Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

The K-Means Advantages

Simplicity: K-means is easy to implement and understand, making it a popular choice for clustering tasks, especially for large datasets.

Efficiency: It is computationally efficient and works well with large datasets.

Scalability: K-means can handle large datasets with ease, making it suitable for clustering in big data applications.

Interpretability قابلة للتفسير: The clusters produced by k-means are easy to interpret, as each data point is assigned to the cluster with the nearest mean.

Versatility تنوع فى الداتا : K-means can be applied to various types of data, including numerical and categorical data, making it a versatile clustering algorithm.

The K-Means Disadvantages

Sensitive to Initial Centroids: K-means clustering is sensitive to the initial selection of cluster centroids, which can lead to different results for each run.

Assumes Spherical Clusters באָבּע פוּב : K-means assumes that clusters are spherical and have similar sizes, which may not always hold true for real-world datasets with irregularly shaped clusters or clusters of varying sizes.

Requires Predefined Number of Clusters: The number of clusters (k) needs to be specified in advance, which may not always be known and choosing an inappropriate value for k can result in suboptimal clustering.

Outlier Sensitivity: K-means is sensitive to outliers, as they can disproportionately affect the positions of cluster centroids and the overall clustering result.

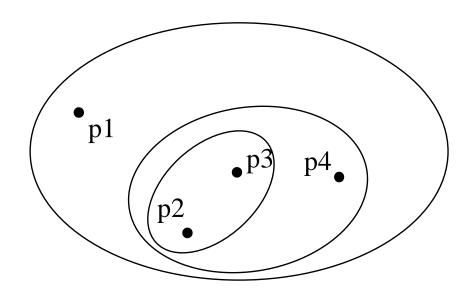
Non-Robust to Noise: K-means may produce poor results when dealing with noisy data or datasets with overlapping clusters.

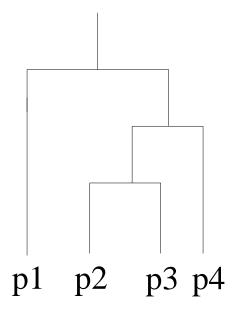
Un-Supervising Learning

- Cluster Analysis: Basic Concepts
 - 1. Partitioning Methods
 - 2. Hierarchical Methods

- 3. Density-Based Methods
- Summary

Hierarchical Clustering





Traditional Hierarchical Clustering

Traditional Dendrogram

2- Hierarchical Clustering

- Hierarchical clustering is a method of cluster analysis that builds a hierarchy of clusters, use distance matrix as clustering criteria.
- This method does not require the number of clusters k as an input, but needs a termination condition

Main types of hierarchical clustering

- **1.Agglomerative Clustering**: This bottom-up approach begins with each data point as a separate cluster and then merges the closest pairs of clusters iteratively until only one cluster remains.
- **2. Divisive Clustering**: This top-down approach starts with all data points in a single cluster and then recursively divides the dataset into smaller clusters until each cluster contains only one data point.

 Step 0

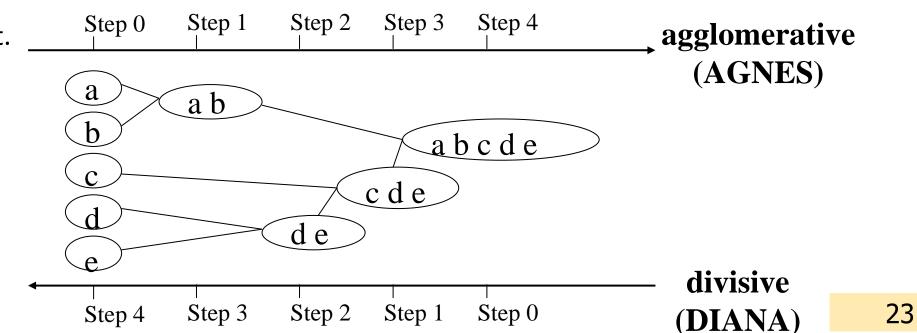
 Step 1

 Step 2

 Step 3

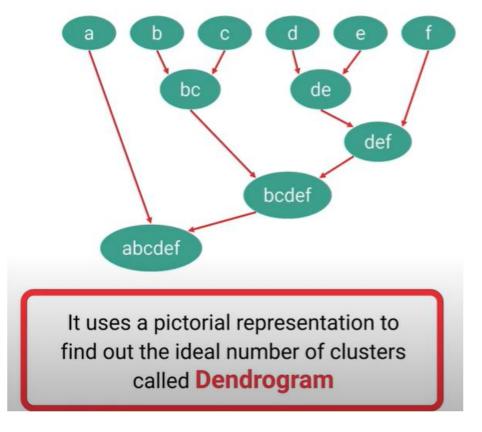
 Step 4

 agglomerative



2-1 AGNES (Agglomerative Nesting)

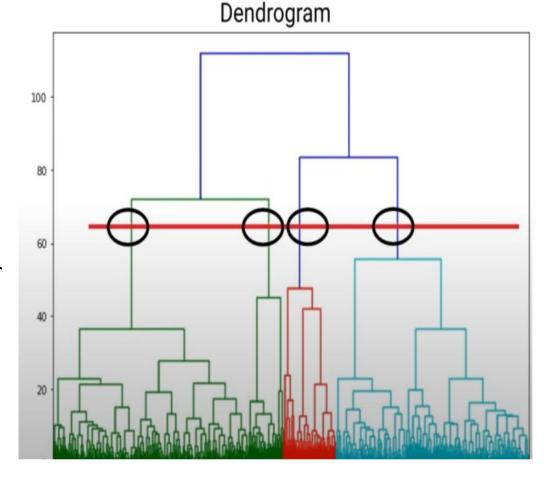
- Use the single-link (smallest distance between one point and cluster) method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity الأقل اختلافا
- Go on in a Ascending fashion
- Eventually all nodes belong to the same cluster



https://www.youtube.com/watch?app=desktop&v=k1ZU51B-33k

Dendrogram: Shows How Clusters are Merged

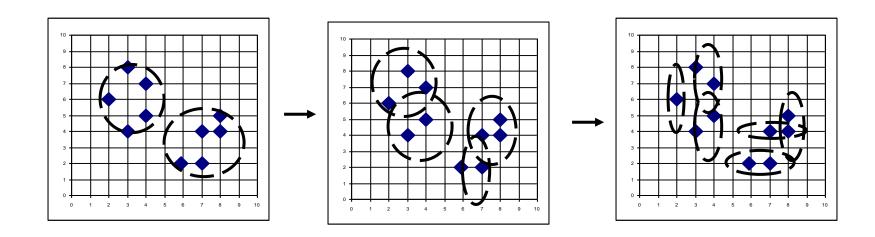
- Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster



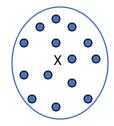
https://www.youtube.com/watch?app=desktop&v=k1ZU51B-33k

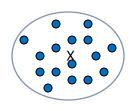
2-2 DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own



Distance between Clusters

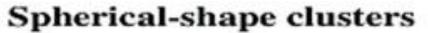


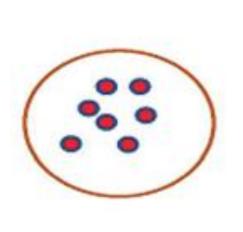


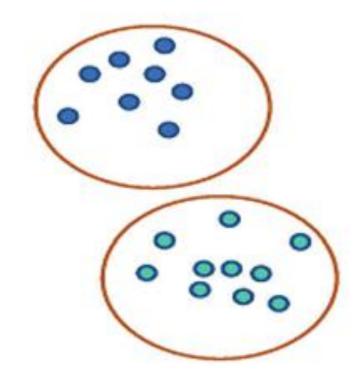
- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = min(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = max(t_{ip}, t_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_i) = avg(t_{ip}, t_{ig})
- •Centroids are the average of all points in the cluster and are not necessarily part of the data set.
- •medoids are actual data points that represent the center of the cluster.
- •Centroids are sensitive to outliers, while medoids are more robust to noise and outliers.
- •Centroids are typically used in K-means clustering, whereas medoids are used in K-medoids or PAM clustering.

Un-Supervising Learning

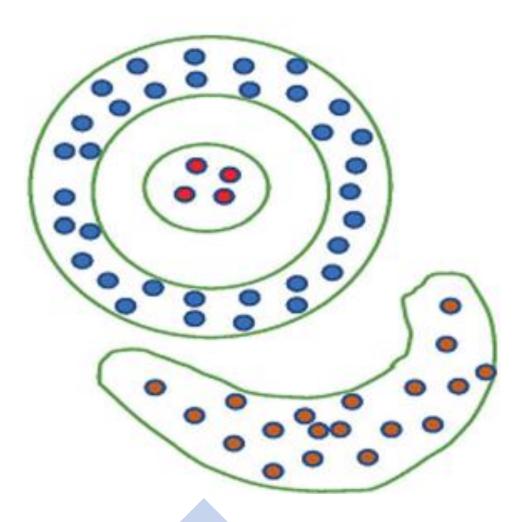
- Cluster Analysis: Basic Concepts
 - 1. Partitioning Methods
 - 2. Hierarchical Methods
 - 3. Density-Based Methods







Arbitrary-shape clusters



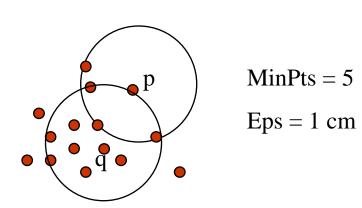
3-Density-Based Clustering Methods

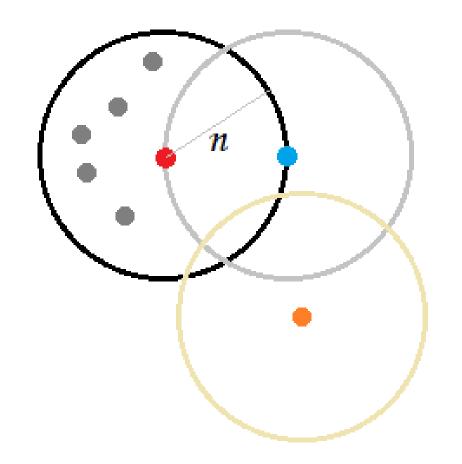
- Density-based clustering methods are algorithms used in machine learning and data mining to group data points based on their density in the feature space.
- One of the most popular density-based clustering algorithms is DBSCAN (Density-Based Spatial Clustering of Applications with Noise).

Density-Based Clustering: Basic Concepts

- In DBSCAN, we define two parameters:
 - Eps(epsilon): Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Eps- neighborhood of that point
- NEps(q): {p belongs to D | dist(p,q) ≤ Eps}
- **Directly density-reachable**: A point *p* is directly density-reachable from a point *q* w.r.t. *Eps, MinPts* if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| \ge MinPts$$





- Core Point
- Border Point
- Noise Point

n = Neighbourhood

m = 4

DBSCAN CLUSTERING

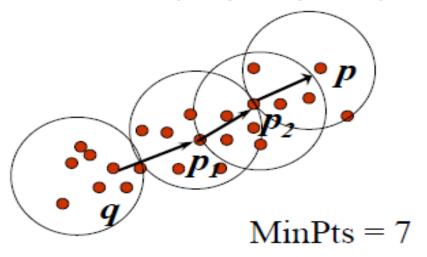
Abhijit Annaldas

Density-Based Clustering: Cluster Formation

- We start by randomly selecting a *data point* and examine its ε-neighborhood.
- If the number of points within the ε-neighborhood exceeds the MinPts threshold, the point is labeled as a core point.
- We then expand the cluster by iteratively examining the ε -neighborhood of each core point and adding its neighbors to the cluster.
- If a core point's neighborhood *contains other core points*, their *clusters are merged*.
- **Border points**, which are within the ε-neighborhood of a core point but **do not have enough neighbors** to be considered core points themselves, are assigned to the same cluster as their core point.
- Points that are not core or border points are labeled as noise.

Density-reachability

- Density-Reachable:
 - A point p is directly density-reachable from p2;
 - p2 is directly density-reachable from p1;
 - p1 is directly density-reachable from q;
 - p←p2←p1←q form a chain.

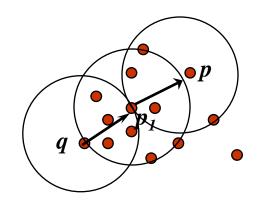


p is density-reachable from q

Density-Reachable and Density-Connected

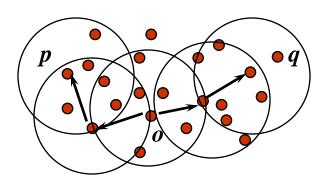
• Density-reachable:

• A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i



• Density-connected

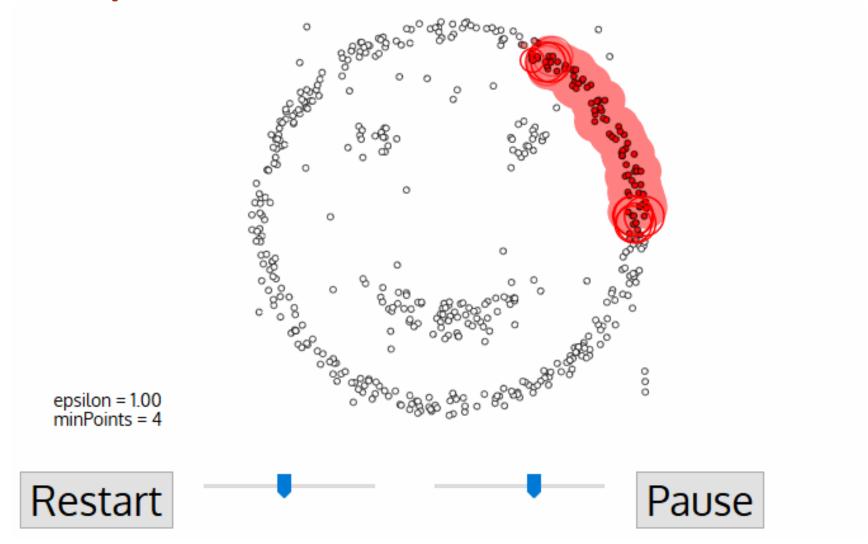
• A point *p* is density-connected to a point *q* w.r.t. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. *Eps* and *MinPts*

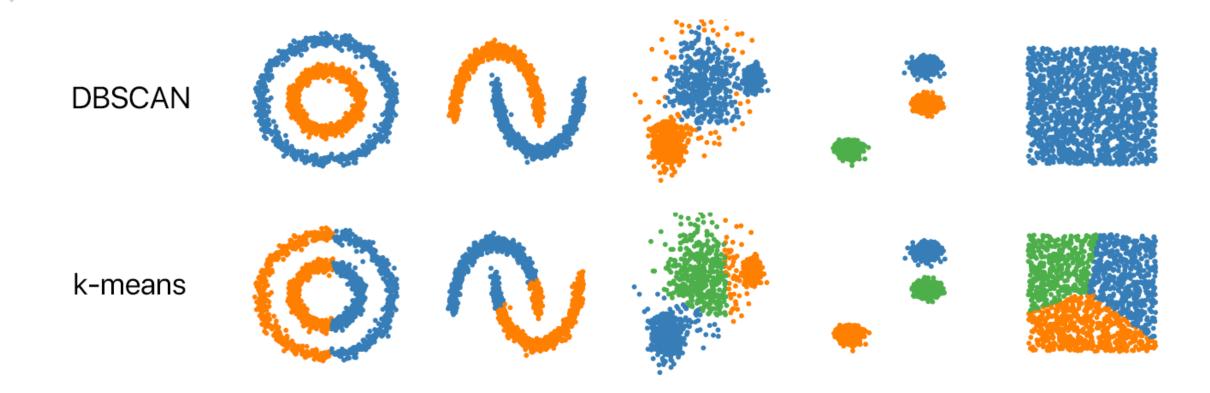


Example:

- Let's say $\varepsilon = 0.1$ (degrees) and MinPts = 4.
- We start by selecting a random data point.
- We then examine its ε -neighborhood (a circle with radius 0.1 degrees) and count the number of points within this neighborhood.
- If there are at least 4 points within this neighborhood, the selected point is labeled as a core point, and its neighbors are added to the same cluster.
- We continue this process, expanding clusters and merging them until all points are assigned to clusters or labeled as noise.

DBSCAN Example





Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- K-means and K-medoids algorithms are popular partitioning-based clustering algorithms
- Birch and Chameleon are interesting hierarchical clustering algorithms, and there are also probabilistic hierarchical clustering algorithms
- DBSCAN, OPTICS, and DENCLU are interesting density-based algorithms

Silhouette score

- The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).
- The silhouette ranges from -1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters.

Example Dataset:

Imagine we have 6 data points that have been clustered into two clusters based on a clustering algorithm:

Cluster Assignments:

Cluster 1: Points A, B, C

Cluster 2: Points D, E, F

The coordinates of the points are:

Point	Coordinates	Cluster
А	(1, 1)	1
В	(2, 1)	1
С	(1, 2)	1
D	(10, 10)	2
Е	(10, 11)	2
F	(11, 10)	2

Calculation of Silhouette Scores:

We will calculate the silhouette score for each point. To keep it simple, we will manually calculate the scores for Points A and D.

Calculation of Silhouette Scores:

We will calculate the silhouette score for each point. To keep it simple, we will manually calculate the scores for Points A and D.

Point A:

1. Intra-cluster distance (a): Calculate the average distance from Point A to Points B and C within Cluster 1.

Distance(A, B) =
$$\operatorname{sqrt}((1-2)^2 + (1-1)^2) = 1$$

Distance(A, C) = $\operatorname{sqrt}((1-1)^2 + (1-2)^2) = 1$
Average distance (a) = (Distance(A, B) + Distance(A, C)) / 2 = (1 + 1) / 2 = 1.

2. **Nearest-cluster distance (b)**: Calculate the average distance from Point A to Points D, E, and F in Cluster 2.

Distance(A, D) =
$$\sqrt((1-10)^2 + (1-10)^2)$$
 ≈ 12.73
Distance(A, E) = $\sqrt((1-10)^2 + (1-11)^2)$ ≈ 13.45
Distance(A, F) = $\sqrt((1-11)^2 + (1-10)^2)$ ≈ 13.45
Average distance (b) = (Distance(A, D) + Distance(A, E) + Distance(A, F)) / $3 \approx (12.73 + 13.45 + 13.45)$ / $3 \approx 13.21$.

3. Silhouette score for Point A:

$$s = \frac{b-a}{\max(a,b)} = \frac{13.21-1}{13.21} \approx 0.924$$

Point	Coordinates	Cluster
Α	(1, 1)	1
В	(2, 1)	1
С	(1, 2)	1
D	(10, 10)	2
E	(10, 11)	2
F	(11, 10)	2

Point B:

- 1. Intra-cluster distance (a): Same as Point A, since the cluster is symmetric.
 - Average distance (a) for Point B = 1.
- 2. Nearest-cluster distance (b): Same as Point A, since the cluster is symmetric.
 - Average distance (b) for Point B ≈ 13.21.
- 3. Silhouette score for Point B:

•
$$s \approx \frac{13.21-1}{13.21} \approx 0.924$$
.

Point C:

- Repeat the same steps as for Point B (since all Points in Cluster 1 are equidistant from each other and from Cluster 2).
- Silhouette score for Point C ≈ 0.924.

Point E:

- 1. Intra-cluster distance (a): Same as Point D.
 - Average distance (a) for Point E = 1.
- 2. Nearest-cluster distance (b): Same as Point D.
 - Average distance (b) for Point E ≈ 13.21.
- 3. Silhouette score for Point E:

•
$$s \approx \frac{13.21-1}{13.21} \approx 0.924$$
.

Point D:

1. Intra-cluster distance (a): Calculate the average distance from Point D to Points E and F within Cluster 2.

Distance(D, E) =
$$\$$
 sqrt((10-10)^2 + (10-11)^2) = 1
Distance(D, F) = $\$ sqrt((10-11)^2 + (10-10)^2) = 1
Average distance (a) = (Distance(D, E) + Distance(D, F)) / 2 = (1+1) / 2 = 1.

2. **Nearest-cluster distance (b)**: Calculate the average distance from Point D to Points A, B, and C in Cluster 1. (We already calculated this in reverse when computing for Point A, so we'll use the same value.)

Average distance (b) = 13.21 (same as for Point A).

3. Silhouette score for Point D:

$$s = \frac{b-a}{\max(a,b)} = \frac{13.21-1}{13.21} \approx 0.924$$

Point	Coordinates	Cluster
Α	(1, 1)	1
В	(2, 1)	1
С	(1, 2)	1
D	(10, 10)	2
E	(10, 11)	2
F	(11, 10)	2

Point E:

- 1. Intra-cluster distance (a): Same as Point D.
 - Average distance (a) for Point E = 1.
- 2. Nearest-cluster distance (b): Same as Point D.
 - Average distance (b) for Point E ≈ 13.21.
- 3. Silhouette score for Point E:

•
$$s \approx \frac{13.21-1}{13.21} \approx 0.924$$
.

Point F:

- Repeat the same steps as for Point E.
- Silhouette score for Point F ≈ 0.924.

Now, with the silhouette scores calculated for each point as approximat the average silhouette score for the entire dataset:

Average Silhouette Score
$$=\frac{\sum_{i=1}^{n} s_i}{n}$$

where s_i is the silhouette score for each point and n is the total number

Average Silhouette Score
$$= \frac{0.924 \times 6}{6} = 0.924$$

The average silhouette score for the clustering is 0.924, indicating a strare well matched to their own clusters and clearly separated from other that the clustering configuration is appropriate for the given dataset.